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Like any carbon forestry approach, wood bioenergy carries risks.

Our objective needs to be minimizing these risks while
maximizing potential benefits.

Let’s start with the assumption of carbon neutrality...
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Is this valid?

Source: Ryan et al. 2010
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Aboveground Carbon (Mg/ha)
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Aboveground Carbon (Mg/ha)
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Understanding Effects on Landscape Scale
Carbon Storage

Biomass harvesting in the NE USA is
almost always part of integrated
harvests.

Multiple stands w/intensified harvest
= New landscape equilibrium storage
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storage
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“Carbon Sequestration Parity”

Banking on foregone
sequestration potential also
carries risks

“Since biomass harvesting reduces C storage but
does not produce the same amount of energy that
would be obtained from an equal amount of C
emissions from fossil fuel combustion, recouping
losses in C storage through bioenergy production
may require many years.”

- From: Mitchell, Harmon, and O’Connell. 2012.
Carbon debt and carbon sequestration parity in forest
bioenergy production. Global Change Biology:
Bioenergy

%)

E

@

g C offset parity point

o

»

(&)

g C debt repayment

2

w

Q

Q o~

@

= C debt

2 (net C debt
(gross)

Time

Unharvested Forest C Storage

Bioenergy Production C Storage + C Offsets
Bioenergy Production C Storage

w—— |nitial C Storage

Fig. 1 Conceptual representation of C Debt Repayment vs. the
C Sequestration Parity Point. C Debt (Gross) is the difference
between the initial C Storage and the C storage of a stand (or
landscape) managed for bioenergy production. C Debt (Net) is
C Debt (Gross) + C substitutions resulting from bioenergy
production.



Choice of baseline and forest management
scenario determines emissions calculus
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Fig. 1 With a dynamic or anticipated future baseline, future emissions are compared to a modeled baseline that assumes a given
trend in forest carbon pools in the absence of the bioenergy activity (a, b). A reference point baseline is defined by the forest carbon
stock in a given area at a given point in time. With a reference point baseline, future emissions are compared to this static point in
time (c, d). The carbon balance of a particular bioenergy can change as a function of baseline type.

From: Zanchi et al. 2012. Global
Change Biology: Bioenergy









* Energy emissions from electricity, heating, or co-
generation

T f e Content (GJ Emission Factor
ype o Assumed nergy Content (GJ) (CO,e/GJ)
Energy . 0 : _ _
Efficiency (%) Bioenergy Fossil Fuel _. Fossil
Generated Bioenergy
(per ton) (per gallon) Fuel
Electricity 30% 4.80 - 0.38 0.11
Thermal 80% 12.80 0.09 0.14 0.08
Co-generation 80% 8.80 0.06 0.21 0.12

* Electricity from fossil fuels is assumed to be NEWE
grid



Net C Flux Post-Harvest

Total C Stored/Offset or Emitted (Mg C ha'1)
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From: Mika and Keeton 2013
Global Change Biology: Bioenergy




Simulation modeling in FVS:

Data:

362 FIA plots from New York, Vermont, New Hampshire and Maine
Randomly selected from 3,306 sites meeting criteria
Representative of age class and stocking distributions for the
Northeast

Scenarios and scheduling:

Bioenergy intensification from Mika and Keeton (2012)
« Mean and 75 percentile
Silvicultural scenarios proportionate to use
« Selection harvest
» Shelterwood
» Clearcut/patch cut
Bioenergy scenarios applied to 25%, 50%, and 100% of landscape
Minimum residual stocking threshold for some scenarios.
Stands randomly selected for “cutting” when they attain harvestable
stocking levels
Regeneration inputs from Nunery and Keeton (2010)



CARBON ACCOUNTING | pl i
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Average fluxes projected over 160
years in NE-FVS
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Net Cumulative
Carbon Flux (Mg ha™)

Net carbon flux projected over 160
years in NE-FVS (N = 362)
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From: Mika and Keeton 2015.
Global Change Biology: Bioenergy.



Carbon Flux Relative to
Non-bioenergy Scenario (Mg ha'1)

Ay
o
1

-16

Projected net carbon flux compared to
baseline (non-bioenergy harvesting)

[ -2.47
r -5.02
+ -9.83
==+ Non-Bioenergy
— BIO100
— BIO50
BIO25
2025 2050 2075 2100 2125 2150 2175

Year

From: Mika and Keeton 2015.
Global Change Biology: Bioenergy.



Do the economics of wood bioenergy
favor intensification of forest harvests?
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Climate Friendly
Forestry: 4 Tests for
Wood Bioenergy

UNIVERSITY Professor of Forest Ecology and Forestry

s Bill Keeton, PhD.
i Carbon Dynamics Lab
y University of Vermont . .
% of VERMONT | sssssisisicns it Director, UVYM Carbon Dynamics Lab.




TeSt #H1. Dld the WOOd Climate mitigation potential in 2025 (Tg CO,e year')

b loene rgy comp ete wit h Forests 0 50 100 150 200 250
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Ag. & grasslands

o 21 Natu ral Climate Avoided grassland conv.
Solutions for Cover crops
Biochar

natural and Aoy cropping
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Improved manure mgmt.

Windbreaks Climate mitigation

* Max. potential of .
1.2 Pg CO2e per Grassland restoration B 100 USD Mg COe-"

Grazing optimization ¢ [

Legumes in pastures ¢ 50 USD Mg CO.e
year
Improved rice 10 USD Mg COe'
Wetlands Other benefit
° Eq u iva Ient to 2 1% Tidal wetland restoration ner | enenis
Peatland restoration Alr
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e m I Ss I O n s Of t h e Seagrass restoration Water

United States
Fargione et al. 2019. Science Advances



SCIENCE ADVANCES | RESEARCH ARTICLE Drever et al., Sci. Adv. 2021; 7 : eabd6034

APPLIED ECOLOGY

Natural climate solutions for Canada

C. Ronnie Drever'*!, Susan C. Cook-Patton®*!, Fardausi Akhter®, Pascal H. Badiou®, Gail L. Chmura®,
Scott J. Davidson’, Raymond L}. Desjardins®, Andrew Dyk®, Joseph E. Fargione'®, Max Fellows®,
Ben Filewod'', Margot Hessing-Lewis'?, Susantha Jayasundara'?, William S. Keeton®, Timm Kroeger?,
Tyler J. Lark'®, Edward Le'®, Sara M. Leavitt?, Marie-Eve LeClerc®, Tony C. Lempriére'”, Juha Metsaranta'®,
Brian McConkey'®, Eric Neilson®, Guillaume Peterson St-Laurent?’, Danijela Puric-Mladenovic'’,
Sebastien Rodrigue'®, Raju Y. Soolanayakanahally®, Seth A. Spawn'®, Maria Strack’,

Carolyn Smyth®, Naresh Thevathasan'?, Mihai Voicu'®, Christopher A. Williams?', Peter B. Woodbury?,
DevonE. Worth®, Zhen Xu'®, Samantha Yeo?, Werner A. Kurz®

Climate mitigation potential in 2030 (Tg CO,e/year)

Agricultural lands 0 5 10 15 20 25 30 35

e 24 NCS for Canada

e Strength of NCS’s will differ btw.
regions due to available

Cover crops

Crop residue - biochar

Nutrient management

Tree intercropping

Manure management

Silvopasture

Increased legume crops
Reduced tillage
Riparian tree planting
Legumes in pasture

Avoided conversion of shelterbelts

Agricultural lands total

Forests

Improved forest management
Avoided forest conversion
Restoration of forest cover

Urban canopy cover

Forests total

opportunities, forest types and
growth rates, albedo effects, etc.

Modeling included wood
bioenergy from residues and
logging slash

Bioenergy CONTRIBUTED to
emissions reduction WHEN it
enhanced other NCS’s, like
improved growth, stocking, and
durable wood products



To maximize bioenergy benefits, complement
other substitution effects, like durable
woodproducts

[ Concrete Substitution Carbon - 80 Year Rotation

B Wood Products Carbon (net of emissions) - 80 Year Rotation

B Forest Carbon - 80 Year Rotation

— Forest Carbon - No Harvest Alternative
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Full carbon accounting: optimize the
CARBON FORESTRY PORFOLIO

Passive management, e.g.

e High Conservation Value forests,
like old-growth and rare habitats

 Unmanaged inclusions

* Wilderness areas

Reforestation, e.g.

* Riparian buffers

e Urban tree planting
* Soil stabilization

tree retef

Improved Forest Management, e.g.
shelterwg

* Retention forestry

e Extended rotations

* Improved growth

* Durablewood products

«__Emissions efficient bioenergy

* Fuels treatment and fire
restoration

Modified selection



Test #2. Does production of wood bioenergy contribute to stable or increasing
net carbon stocks at landscape scales? Is the climate benefit of expanded
bioenergy production greater than the opportunity cost?

m C storage in harvested wood

roducts _
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Less retention, higher harvest frequency More retention,
lower frequency

From: Nunery and Keeton. 2010. Forest Ecology and Mgt.

Management scenario modeled over 160 years




Vermont’s forests currently are a
“Natural Climate Solution”

They store 480 million metric Vermont Forest Carbon Storage
tonnes of carbon

264 MtC/ha (or 107 MtC/acre)

> 60% is belowground 5
Carbon stocks are increasing as [ :
forests mature

They sequester 4.4 million
metrlc tonnes per year M Soil Organic Carbon Belowground Biomass Litter M Dead Wood Aboveground Biomass

Source: Vermont Forest Carbon Assessment, 2017

Current biomass production is part of this mix!
Would intensified wood bioenergy production intensify
harvests, leading to declines in Carbon stocking?



Test # 3. Is the production
of wood bioenergy part of
multi-functional forest
management?

...e.g . Improved growth
and stocking, flood
resilience, biodiversity,
and exceptionally high-
guality stream habitats




Wood bioenergy as an incentive

to sustain working forests
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From: Foster et al. 2010. Wildlands and Woodlands
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https://www.vlt.org/forest-carbon-report-released/

Most eligible parcels for carbon projects in

Vermont; greatest co-benefits

. High
80th %ile

> FLOOD
Interior

Forestarea + 2 FLOODgg, 4  forestcores

5 FLOODy, Buffers

Flood mitigation demand data credit:
Watson, K.B., and T. Ricketts, 2017. Flood mitigation demand raster [GIS Dataset]

= 285,00 acres



Test #4. Does production of durable wood products
help make forests future adapted? Resilience to
climate change and disturbances?

INTERESTING gy
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Older Forests Resist Climate Change Better

New research is finding that older is better when it comes to forests.
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The mix of services forests provide will shift as the
climate changes...this includes C sequestration

“Services” and biodiversity:
* Relative to forest age

* Relative to one another

* With climate change

Site biome
Temperate forest

Boreal forest

Forest density
¥ Rare

Fatch y

[ransitiona
Dominant

- Interior
1.000 Km ' ' 3 Intact

Thom...Keeton et al. 2019. Global Change Biology
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How do we maximize the benefits
of wood bioenergy?

THE CDNVERSATK)N https://theconyersation.com/if-we-burn-wood-for-energy-we-cant-

have-our-cake-and-eat-it-15634

Academic rigor, journalistic flair

COVID-19 Arts + Culture Economy Education Environment + Energy Ethics + Religion Health Politics + Society Science + Technology

If we burn wood for energy, we “Getting this right is vital, because we have a
can’t have our cake and eat it  ipgow of only the next few decades to

PUbIshed: v, 2073 15sam EAT stabilise atmospheric greenhouse gases,

- beyond which some scientists believe climate
disruption will be irreversible.”

e Favor thermal or combined heat and power
over electricity generation only

* Favor small scale, high efficiency
applications

* Practice excellent forestry that maintains
high carbon stocking and retains key
elements of stand structure

3 @ * Ensure that wood biomass production

T m— meets the four tests



http://www.pnas.org/content/106/6/1704.abstract?sid=76a54081-e18f-4786-9e7b-4db25419413e
https://theconversation.com/if-we-burn-wood-for-energy-we-cant-have-our-cake-and-eat-it-15634
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